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Abstract: We have switched GaAs/AlAs and AlGaAs/AlAs planar
microcavities that operate in the “Original” (O) telecom band by exploiting
the instantaneous electronic Kerr effect. We observe that the resonance
frequency reversibly shifts within one picosecond when the nanostructure
is pumped with low-energy photons. We investigate experimentally and
theoretically the role of several parameters: the material backbone and its
electronic bandgap, the quality factor, and the duration of the switch pulse.
The magnitude of the frequency shift is reduced when the backbone of the
central λ−layer has a greater electronic bandgap compared to the cavity
resonance frequency and the frequency of the pump. This observation is
caused by the fact that pumping with photon energies near the bandgap
resonantly enhances the switched magnitude. We thus find that cavities op-
erating in the telecom O-band are more amenable to ultrafast Kerr switching
than those operating at lower frequencies, such as the C-band. Our results
indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both
the pump and the probe to the telecom range to perform Kerr switching
without detrimental two-photon absorption. We observe that the magnitude
of the resonance frequency shift decreases with increasing quality factor of
the cavity. Our model shows that the magnitude of the resonance frequency
shift depends on the pump pulse duration and is maximized when the
duration matches the cavity storage time to within a factor two. In our
experiments, we obtain a maximum shift of the cavity resonance relative to
the cavity linewidth of 20%. We project that the shift of the cavity resonance
can be increased twofold with a pump pulse duration that better matches
the cavity storage time. We provide the essential parameter settings for
different materials so that the frequency shift of the cavity resonance can be
maximized using the electronic Kerr effect.
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6. C. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in
GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).

7. C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl.
Phys. 47, 133001 (2014).

8. A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly
efficient parametric fiber mixer: design study,” Opt. Express 22, 23512–23527 (2014).

9. X. Xia, J. Xu, and Y. Yang, “Controllable optical bistability of an asymmetric cavity containing a single two-level
atom,” Phys. Rev. A 90, 043857 (2014).

10. P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic
crystals,” Phys. Rev. B 66, 081102(R)–1–4 (2002).

11. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
12. H. Thyrrestrup, A. Hartsuiker, J.-M. Gérard, and W. L. Vos, “Switching the decay rate of an emitter inside a

cavity in the time domain,” Opt. Express 21, 23130–23144 (2013).
13. R. Johne, R. Schutjens, S. F. Poor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a

quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A 91, 063807 (2015).
14. R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
15. A. Hartsuiker, P. J. Harding, Y. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Kerr and free carrier ultrafast

all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104,
083105 (2008).

16. P. J. Harding, T. G. Euser, and W. L. Vos, “Identification of competing ultrafast all-optical switching mechanisms
in Si woodpile photonic crystals,” J. Opt. Soc. Am. B 28, 610–619 (2009).
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1. Introduction

Fast optical switching rates are currently under demand by both optical information technolo-
gies [1–9] and by fundamental studies that aim to manipulate light-matter interactions at fem-
tosecond time scales [10–13]. The electronic Kerr effect inherently provides the highest pos-
sible speed given its virtually instantaneous response nature [7, 14–20]. Using the Kerr effect
the resonance of a microcavity has been switched within a duration as short as 300 fs [17], and
repeated switching has been performed at unprecedented single-channel rates beyond one THz
clock rate [20]. The electronic Kerr effect is a third-order nonlinear process and its magnitude
increases linearly with the intensity of the pump laser pulse [14]. Increasing the intensity of
the laser pulse, however, causes the excitation of free carriers that have a much slower speed
and counteract the electronic Kerr effect [18, 21]. Fortunately, the excitation of free carriers
through two-photon absorption process can be suppressed via the judicious selection of the
photon energy and the intensity of the switching pulse [15–18, 20].

Until now, however, only moderate switch amplitudes at most around quarter a mode
linewidth have been reported [17, 18, 20]. In view of practical applications of Kerr switch-
ing, a shift of at least half a linewidth is highly desirable, to benefit from a large modulation of
the reflectivity or transmission of the microcavity. To achieve this challenging goal, one has to
delicately choose all parameters that play a role in frequency shift of the cavity resonance; 1)
the intensity of the light pulses, 2) the backbone and the frequency of light relative to the back-
bone’s electronic bandgap, 3) the quality factor of the cavity, and 4) the duration of the switch
pulse. Previously, we have investigated the effect of the pump intensity with emphasis on the
competition between Kerr and free-carrier effects that occur at high pump intensities [18]. In
this work, we explore, for the first time, the effect of the backbone, the frequency of the pump
and the probe light relative to the backbone’s electronic bandgap, cavity storage time, and the
duration of the pump pulse. As a result, we provide a set of crucial parameters that serve to
maximize the resonance frequency shift induced by the electronic Kerr effect. Noticeably, we
show that AlGaAs/AlAs microcavities designed to operate at telecom wavelength should enable
near-instantaneous Kerr switching with both pump and probe tuned to telecom wavelengths.

2. Experimental details

2.1. Samples

We have performed experiments on planar microcavities that consist of a GaAs λ -layer (d =
376 nm) sandwiched between two Bragg stacks consisting of λ/4-thick layers (dGaAs = 94 nm)
and AlAs (dAlAs = 110 nm) that are grown on a GaAs wafer. Figure 1(b) shows a scanning
electron micrograph (SEM) cross-section of a GaAs/AlAs sample. Since the bottom Bragg
mirror is positioned on a GaAs wafer, there is a smaller refractive index contrast that results in
a lower reflectivity. Therefore, a greater number of layers is required for the bottom Bragg stack
to achieve a similar reflectivity as for the upper Bragg stack. The cavity resonance is designed
to occur at λ0 = 1280±5 nm in the Original (O) telecom band. For a λ−microcavity the mode
number is m = 2 [22] , hence the cavity quality factor readily gives the finesse. The cavity mode
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extends over about 1 µm along the longitudinal direction of our samples.
In order to achieve a range of quality factors we prepared a large sample and cut it into smaller

chips (5 mm×5 mm). Next, a number of layers is selectively removed from the top Bragg stack
of one chosen chip by dry and wet etching techniques to obtain four asymmetric GaAs/AlAs
cavities with sequentially reduced quality factors, see Table 1 for a list of all samples.

To investigate the effect of the bandgap of the backbone on Kerr switching, we have also stud-
ied a planar microcavity made of a Al0.3Ga0.7As λ -layer (d = 400 nm) sandwiched between two
Bragg stacks made of 9 and 16 pairs of λ/4-thick layers of Al0.3Ga0.7As (dAlGaAs = 100.2 nm)
and AlAs (dAlAs = 111.7 nm), respectively, and grown on a GaAs wafer. The AlGaAs/AlAs
cavity is designed to resonate at λ0 = 1280±5 nm and has a quality factor of Q = 210.

Table 1. List of samples used in this work. The resonance frequency ω0 and corresponding
wavelength λ0, and the quality factor Q of the cavities are obtained from our measurements.
The last column shows in which sections the cavities are discussed.

Quality Backbone Top/Bottom ω0 [cm−1] λ0 [nm] Used in
factor Num. of pairs Section

390±60 GaAs/AlAs 7/19 7806±40 1281±6 3.1, 3.2, 3.3
540±60 GaAs/AlAs 11/19 7762±40 1288±6 3.2
890±60 GaAs/AlAs 15/19 7806±40 1281±6 3.2
210±60 Al0.3Ga0.7As/AlAs 9/16 8038±40 1244±6 3.1

2.2. Setup

Fig. 1. (a) Schematic of the all-optical switch setup. The probe beam path is shown in blue,
the pump beam path in red. The time delay between pump and probe pulses is set with
a delay stage. The reflected signal from the cavity is spectrally resolved and detected. (b)
SEM picture of the multilayer structure of a GaAs/AlAs microcavity. GaAs layers appear
light grey, and AlAs layers dark grey. The white arrows indicate the thickness of the GaAs
λ -layer. The GaAs substrate is seen at the bottom. The magnifier shows a more detailed
view on how the λ -layer is sandwiched between the Bragg stacks.
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A versatile ultrafast pump-probe setup is used to Kerr-switch our microcavity [23]. The
setup is shown in Fig. 1(a) and consists of two independently tunable optical parametric am-
plifiers (OPA, Light Conversion Topas) pumped by a 1 kHz oscillator (Hurricane, Spectra
Physics) that are the sources of the pump and probe beams. The pulse duration of both OPAs
is τP = 140±10 fs. The time delay ∆t between the pump and the probe pulse is set by a delay
stage with a resolution of 15 fs. The measured transient reflectivity contains information on
the cavity resonance during the cavity storage time and it should thus not be confused with the
instantaneous reflectivity at the delay ∆t, see Appendix A.

The cavity is switched with the electronic Kerr effect by judicious tuning of the pump and
the probe frequencies relative to the semiconductor bandgap of the cavity backbone [15, 16].
The probe frequency ωpr is set by the cavity resonance in the telecom range (see Table 1).
Furthermore, the photon energy of the pump light is chosen to lie below half of the semicon-
ductor bandgap energy of both GaAs and AlGaAs (Epu < 1

2 Egap) to avoid two pump-photon
excitation of free carriers. Therefore, the pump frequency is centered at ωpu = 4165 cm−1

(λpu = 2400nm). The frequency of the pump and the probe light is kept the same for the GaAs
and AlGaAs cavities to directly compare the effect of photon energy relative to the electronic
bandgap. The probe fluence is set to Ipr = 0.18± 0.02 pJ/µm2 while the average pump flu-
ence is set to Ipu = 65± 20 pJ/µm2. The fluences are chosen such that they yield an as large
as possible Kerr effect without unwanted free carrier excitation in GaAs [18]. The fluence of
the pulses is determined from the average laser power at the sample position and is converted
to peak power assuming a Gaussian pulse shape. The pump beam has a larger Gaussian focus
(2rpu = 70 µm) than the probe beam (2rpr = 30 µm) to ensure that only the central flat part of
the pump focus is probed and that the probed region is spatially homogeneously pumped [24].
The induced resonance frequency shift with the electronic Kerr effect is determined by the
pump-probe delay (∆t) and the spatial overlap of the pump and the probe beams. For this rea-
son, once we fix the spatial alignment of the pump and probe beams we successively perform
switching of the different cavities to allow for the best possible comparison.

3. Results and discussions

3.1. Basic observables

Figure 2(a) shows the resonance frequency versus pump-probe time delay ∆t for the GaAs/AlAs
cavity with Q = 390±60. The resonance is taken as the minimum of the transient reflectivity
trough. The resonance quickly shifts by 5.6 cm−1 to a lower frequency at pump-probe over-
lap (∆t = 0) and quickly returns to the starting frequency within 1 ps. The shift of the cavity
resonance to a lower frequency is due to the increased refractive index of GaAs, shown on the
right ordinate. Our dynamic model (see Appendix B) predicts the frequency shift during the
instantaneous switching of the cavity in excellent agreement with our experimental results.

Figure 2(a) shows that the minimum of the resonance trough appears at a higher frequency
when the probe pulse arrives before the pump pulse (∆t < −500 fs) even though the refrac-
tive index only increases. The apparent blue shift is the result of interference between probe
light that reflects from the top Bragg mirror and probe light that is confined to the cavity, is
frequency modulated, and then escapes. While the instantaneous cavity resonance tracks the
refractive index change and only red-shifts (Fig. 2(a)), the minimum of the cavity trough is ap-
parently blue shifted. The apparent blue shift of the cavity trough is a result of the asymmetric
cavity design. In the asymmetric cavities the top Bragg mirror consist of fewer layers than the
bottom Bragg mirror. This results in more leakage from the top Bragg mirror. As a result, the
interference between the probe light that escapes from the cavity (where it is modulated by the
pump pulse) and the probe light that has directly reflected from the top mirror increases. Given
the increased modulation, the resonance trough seems to appear at a higher frequency, even
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though the refractive index does not yet change and certainly does not decrease [25].
Since the apparent blue-shift is the result of interference involving light escaping from the

cavity, we verify the magnitude of the apparent blue-shift by calculating it for cavities with a
decreased escaping intensity from the top mirror. Therefore, we have performed calculations
for cavities with sequentially increased number of top Bragg layers as shown in Fig. 2(b). With
increasing number of top layers the cavity becomes more symmetric and at the same time the
quality factor of the cavity increases. In Fig. 2(b) we observe that the apparent blue shift of
the cavity resonance at ∆t < 0 decreases for increasingly symmetric cavities. In Fig. 2(b) the
red shift of the cavity resonance at ∆t = 0 decreases with increasing quality factor, which will
be discussed in section 3.3. We summarize our observations that the reversible red shift of the
cavity resonance corresponds to the derived electric Kerr effect, whereas the apparent blue-shift
is the result of an spatial interference.

Fig. 2. (a) Measured (symbols) and calculated (red curve) resonance frequency versus time
delay (∆t) between pump and probe for a GaAs/AlAs cavity (Q= 390±60). The resonance
frequency red-shifts due to increased refractive index only near temporal overlap (∆t = 0 ±
15 f s) of pump-probe, shown with dashed curve. (b) Calculated spectra for a GaAs/AlAs
cavity that consists of 19 pairs of bottom Bragg layers, λ−layer, and sequentially changed
number of layers on the top Bragg mirror.

3.2. The effect of the backbone’s electronic bandgap

To compare the effect of the backbone’s electronic bandgap we have performed Kerr switching
experiments on cavities that has similar quality factors and consist of GaAs/AlAs (Q = 390)
and AlGaAs/AlAs (Q = 210). Figure 3(a) and 3(c) shows the resonance frequency versus time
delay for these GaAs/AlAs and AlGaAs/AlAs microcavities, respectively. The cavity resonance
for the AlGaAs cavity shifts by 1.8 cm−1, which is less than 4.7 cm−1 of the GaAs cavity. To
understand this lower frequency shift with the AlGaAs/AlAs cavity we consider how the third
order susceptibility depends on material parameters.

Figure 4 shows the nondegenerate dispersion (G2) curve of the electronic Kerr effect for
probe frequency ωpr within the original (O) and conventional (C) telecom bands. The function
G2 determines the dispersion of the nonlinear index coefficient n2 as follows [26]:

n2(ωpr,ωpu) =
h̄cK

2

√
Ep

E4
gapn0prn0pu

G2(ωpr,ωpu), (1)

where K is a constant, Ep the Kane energy (' 21 eV ), Egap the bandgap, and n0pr,n0pu are
the linear refractive indices at probe (ωpr) and pump frequency (ωpu), respectively. The dis-
persion function is obtained by the Kramers-Kronig transformation of the interband absorption
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Fig. 3. Resonance frequency versus time delay (∆t) between pump and probe for (a)
GaAs/AlAs (Q = 390) and (c) AlGaAs/AlAs cavity. The resonance frequency red-shifts
due to increased refractive index only near temporal overlap (∆t = 0 ± 15 f s) of pump-
probe. Both cavities are switched at 65 pJ/µm2 pump fluence. The dashed lines represent
the unswitched cavity resonance frequency. The solid curves represent the induced refrac-
tive index change. The schematic representation of the electronic bandgap of (b) GaAs and
(d) AlGaAs and the energy of the pump and probe photons relative to the bandgap.

change [26]. The dispersion of the nonlinear refractive index coefficient n2 has been also val-
idated experimentally [27–30]. We calculate the dispersion function G2 from Sheik-Bahae et.
al. [26], Table 2. In Fig. 4 we see that the nonlinear index coefficient is maximized near the non-
degenerate two photon absorption edge [28,29]. Our cavities are designed to operate within the
original (O) telecom band, which corresponds to a reduced probe frequency h̄ωpr/Egap = 0.65.
We set the pump frequency to h̄ωpu/Egap = 0.35 in order to suppress degenerate free carrier ex-
citation, see Fig. 3(b1). The non-degenerate free carrier excitation (pump and probe, Fig. 3(b2))
is suppressed since the probe fluence is much smaller than the pump fluence. At this setting of
the pump frequency, the non-degenerate sum of pump and of probe frequency are tuned close
to the electronic bandgap of the material. As a result, the nonlinear index coefficient is close
to the maximum, as shown in Fig. 4. We use the same frequency of the pump and of the probe
light for the AlGaAs/AlAs cavity. In this case we operate away from the electronic bandgap of
AlGaAs both for degenerate two-pump photon excitation (Fig. 3(d1)) and for non-degenerate
pump and probe photon excitation (Fig. 3(d2)). Consequently, we observe less refractive index
change due to a smaller nonlinear refractive index coefficient, see Fig. 4, which explains the
smaller shift of the cavity resonance in Fig. 3(c).

Figure 4 also shows the dependence of the nonlinear index coefficient versus pump frequency
when the cavity resonance ωpr is set to operate within the C-band (1530− 1565 nm). In this
case, we see that the electronic Kerr effect is maximized when the pump frequency is tuned to
h̄ωpu/Egap = 0.5 (λpu ' 1700 nm for GaAs). At this pump frequency, however, the probability
for the excitation of free carriers via two pump photons will be strong, which will hinder the
electronic Kerr effect [18]. In contrast, cavities operating within O-band (1260− 1360 nm)
are more amenable than in the C-band for ultrafast switching using the electronic Kerr effect,
since the greater probe frequency can be combined with a lower pump frequency to profit from
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Fig. 4. Nondegenerate dispersion curve of the electronic Kerr effect for probe frequency
within original (O) and conventional (C) telecom bands, shown with solid and dashed
curves, respectively. The symbols mark the G2 values at our setting of pump frequency for
GaAs and AlGaAs cavities.

the maximized nonlinear index. Simultaneously, a lower pump frequency will much less likely
induce unwanted two-photon excitation of free carriers.

3.3. The effect of the cavity storage time

We have performed switching experiments on cavities with different quality factors to investi-
gate the effect of the cavity storage time τc on the Kerr-induced resonance frequency change.
Figure 5 shows the relative cavity resonance frequency shift versus both the quality factor Q
and the storage time τc of the cavity. We observe that the shift of the cavity resonance frequency
(δω) relative to the cavity linewidth (∆ω) is maximal when the storage time is matched to the
pump pulse duration τP. We see both in our measurements and in our model (for the model see
Appendix B) that increasing the storage time τc of the cavity not only decreases the switching
speed but also decreases the induced frequency shift induced via the Kerr effect. This can be un-
derstood since the magnitude of the observed frequency shift (δω) is given by the time-overlap
integral of the pump and probe light that is stored in the cavity [17]. The decreasing frequency
shift with increasing quality factor is caused by the decreased temporal overlap of pump and
probe as the cavity-stored probe pulse becomes much longer than the pump pulse (τcav� τP).

In qualitative agreement with our experiments, our model in Fig. 5 shows that a greater
resonance frequency shift is observed for a cavity that matches the switch pulse duration during
the Kerr switching of a cavity. The relative shift of the resonance frequency is maximal at
τc = 140 fs, reaching a value close to 40%, when the duration of the cavity-stored probe matches
the pump duration (τc ' τP). Our model predicts a greater resonance frequency shift compared
to our experiments. Our model employed in Fig. 5 is an improvement over our earlier work since
it contains explicit time dependency, as opposed to the time-independent model we presented
earlier [18]. In our previous study [18] we have investigated the effect of the cavity enhancement
and found that the effect of the counteracting free carriers is more pronounced for high quality
factor cavities. In a cavity with a high quality factor the probe light intensity is enhanced and
thereby the probability of degenerate and non-degenerate two-photon excitation of free carriers
is increased [18]. Therefore, the difference between our dynamic model and our experiments is
larger for high quality factor cavities since we can currently not include free carrier effects in
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Fig. 5. Relative cavity resonance frequency change versus quality factor and cavity storage
time. The calculations and the experiments are performed at 65 pJ/µm2 pump fluence and
pulse duration τpu = 140 fs. The calculations are performed at pump-probe delay ∆t =
−100 fs. Black circles show the measured results within the standard deviation. The solid
curve indicates the calculated relative frequency change for different quality factor cavities.

Fig. 6. Schematic representation of the pump and probe pulses in the cavity for two different
quality factor cavities, (a) high-Q, (c) low-Q. The lower panels show the instantaneous
frequency shift versus time. The cavity resonance instantaneously shifts from ω0 to ω ′ at
pump probe overlap (∆t = 0). The detected resonance shift (ωavg) is deduced from the
transient reflectivity that is a result of the time averaging of the cavity storage and detector
response time. A larger resonance frequency shift δω is observed for cavities with shorter
storage times.

the model. In cavities with a short storage time the excited free carrier density is reduced and
the temporal overlap of the pump pulse with the cavity-stored probe light is increased (τc ' τP),
which even allows to Kerr switch a cavity resonance at exhilarating THz clock rates [20].

Figure 6 schematically illustrates the effect of the storage time of the cavity on the Kerr
switching of a microcavity in real time. We plot situations where the delay ∆t is such that the
overlap of the pump and cavity-stored probe is maximal, and we assume the observed cavity
resonance ωavg to be averaged over the whole pulse duration in view of the relatively slow
detection (tint > τpr), see section 2.2. For a high quality factor cavity, see Fig. 6(a) and 6(b),
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there is no pump light during a long fraction of the probe pulse in the cavity since τc� τP. As
a result, the average resonance frequency shift ωavg is small. Given the same refractive index
change, one would naively expect to observe a greater relative shift of the cavity resonance
for a high quality factor cavity. However, this is only true if the switch duration is longer than
the cavity storage time (τc < τP). Since the Kerr switching of the cavity is performed within
the pump pulse duration, one has to consider the overlap integral in time to get the average
resonance frequency shift. This overlap is determined both by the duration of the pump pulse
and the quality factor of the cavity that affects the duration of the cavity-stored probe pulse.
Consequently, at similar switch conditions a cavity with a shorter storage time will reveal a
greater shift of the time averaged resonance ωavg since the instantaneous cavity resonance shift
ω ′ has a larger weight. As illustrated in Fig. 6(c) and 6(d), a larger portion of the cavity-stored
probe light overlaps with the short pump pulse in a cavity that has a short storage time, close to
the pump pulse duration (τc ' τP).

3.4. The effect of the pump pulse duration

Fig. 7. Calculated relative cavity resonance frequency change with respect to the cavity
linewidth (∆ω) versus the pump pulse duration for GaAs/AlAs cavity with Q = 450. The
calculations are performed at a pump intensity of 70 GW/cm2 and the peak intensity is
kept constant for each pulse duration. The calculations are performed at pump-probe delay
∆t = 0 fs. The red circle marks the duration of the pump pulse in our experiments.

To investigate the effect of the pump pulse duration on Kerr-induced cavity resonance fre-
quency switching, we have performed calculations on a switched cavity using our dynamic
model as a function of the pump pulse duration. Similar to our experiments, the microcavity in
our calculations has 7 pairs of GaAs/AlAs layers in the top mirror and 19 pairs of GaAs/AlAs
layers in the bottom mirror and is surrounded by air. For the modeled nanostructure we get a
quality factor Q = 450 in our calculations whereas the closest cavity in our experiments has
a quality factor Q = 390. The difference in measured and calculated quality factors are due
to absence of loss mechanisms in the model, such as slight deviations of the layer thicknesses
versus the nominal design. Moreover, in our model we do not include the GaAs wafer that
also increases the quality factor, given the increased contrast between air and the bottom Bragg
mirror. Figure 7 shows the cavity resonance frequency shift relative to the resonance linewidth
(δω/∆ω) versus the pump pulse duration at a pump-probe delay ∆t = 0 fs. The maximum
shift (δω) reaches 32% when the pump pulse duration is set to τP = 550 fs for this particular
cavity. Beyond τP = 1 ps the cavity resonance frequency shift decreases with increasing pump
pulse duration. When we compare the optimum pump pulse duration (τP = 550 fs) to the cavity
storage time (τc = 300 fs for Q = 450, see Fig. 5) we observe that they are of comparable mag-
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Fig. 8. Schematic representation of the pump and probe pulses in the cavity for three dif-
ferent pump pulse durations. The peak intensity of the pump pulse is kept constant while
stretching the pump pulse. The lower panels show the instantaneous frequency shift versus
time. The cavity resonance instantaneously shifts from ω0 to ω ′ at pump probe overlap
(∆t = 0). The detected resonance shift (ωavg) is deduced from the transient reflectivity that
is a result of the time averaging of the cavity storage and detector response time.

nitude, as is to be expected. It is noteworthy that the times are not exactly equal as τP/τc = 1.8.
The difference of unity is probably related to subtle issues of pulse shapes that determine the
detailed temporal overlap of the pump and probe fields. Although, the effect of the cavity stor-
age time is similar to pump pulse duration we see in Fig. 7 that at τP = 140 fs the resonance
frequency shift is smaller than the results shown in Fig. 5. This is because in Fig. 5 the reso-
nance frequency shift is calculated ∆t =−100 fs, at which delay the resonance frequency shift
reaches its maximum [20], whereas at ∆t = 0 fs the resonance shift is smaller on the probe pulse
has already partially escaped from the cavity. This time delay was chosen here so that we can
calculate the effect of the pump pulse duration that is shorter than the cavity storage time.

To interpret the behavior versus pulse duration, we schematically depict in Fig. 8 the probe
pulse that is in resonance with the cavity and the pump pulse versus real time. The resonance
frequency of the cavity shifts from ω0 to ω ′ due to the instantaneous change of the refractive
index. Given the time averaging of the detector, we observe an average resonance frequency
shift ωavg that is smaller than the instantaneous shift. For a short pump pulse duration (τP <
τc) illustrated in Fig. 8(a) the cavity-averaged frequency shift is small, see Fig. 8(b). As the
pump pulse gets longer in time (Fig. 8(c)) the weight of instantaneous shift increases in the
time-averaged resonance frequency shift. As a result, a greater shift of the cavity resonance is
observed, see Fig. 8(d). Stretching the pump pulse to be much longer than the cavity storage
time tomographically samples the probe light in the cavity, see Fig. 8(e) and 8(f). The average
resonance frequency shift decreases when τP� τc since the magnitude of the frequency shift
δω is given by the overlap integral of the pump and probe. We conclude that the storage time of
the cavity and the duration of the pump pulse have similar consequences in resonance frequency
shift of the cavity [17].

Our dynamic calculations have shown that the relative resonance frequency shift can be in-
creased by 1.7×, by increasing the pump pulse duration from τP = 140 fs to τP = 550 fs. As a
result, we project that the resonance frequency shift we experimentally obtain 5.6 cm−1 can be
increased to 9.5 cm−1, which is half a linewidth.
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4. Summary and conclusion

We have studied the ultrafast all-optical switching of GaAs/AlAs and AlGaAs/AlAs semicon-
ductor microcavities at telecom wavelengths using the electronic Kerr effect. We investigate
the effect of the pump pulse duration, the cavity storage time, backbone material, and the fre-
quency of the pump and the probe relative to the electronic bandgap of the backbone material.
We show that the refractive index change induced by the electronic Kerr effect is increased
when the cavity storage time match the pump pulse duration. Our results indicate that cavities
with AlGaAs backbone hold the advantage that both the pump and the probe can be at telecom
wavelengths. In this case, for a cavity operating at O-band, the pump frequency should be set
to about 7280 cm−1(1370 nm) to maximize the non-degenerate nonlinear index coefficient.
Two-photon excitation of free carriers via degenerate pump photons will still be suppressed
at this photon energy since AlGaAs has a larger bandgap. Our results indicate that an addi-
tional twofold increase of the nonlinear index coefficient can be expected with this setting of
the cavity resonance and the pump frequency for AlGaAs cavity.

Appendix A: Transient reflectivity

We explain the transient reflectivity using the description given in earlier studies [23, 31, 32].
In the absence of spectral filtering, the measured signal J, neglecting electronic amplification
factors, is equal to the magnitude of the time- and space-integrated Poynting vector S [23, 31]:

J = πr2
∫ tint/2

−tint/2
|S|dt =

∫ tint/2

−tint/2

√
ε0

µ0
E(t)2dt (2)

≈ πr2
√

ε0

µ0

Ẽ0

2

∫
∞

−∞

(e−4ln2t2/τ2
P)2dt (3)

= πr2
√

ε0

µ0

√
π

2ln(2)
τPẼ0

2

4
, (4)

where the electric field E(t) reflected by a mirror onto the detector can be separated in a Gaus-
sian envelope Ẽ(t) of FWHM τP and amplitude Ẽ0 that is multiplied by sinusoidal compo-
nent with a carrier frequency ω0 in rad/s. This slowly varying envelope approximation (SVEA,
see [33]) can be applied to pulses where τP >> 1/ω0, and where ω0 does not change over t,
in other words, for bandwidth limited pulses. For pulses whose envelope is broadened by the
interaction with a cavity, the analytic expression (Eq. (4)) is not valid, but the approximation
of the integration limits remains the same. The beam is collimated and has radius r, ε0 and µ0
denote the permitivity and permeability of free space, respectively. Since the integration time
tint of the InGaAs line array detector is much longer than any probe interaction time τpr, we
essentially integrate all probe light that is stored or reflected by the cavity, given a pump-probe
time delay ∆t. The probe interaction time is either τpr = τP or τpr =Q/ω0, whichever is greater,
and it is in the 100 fs to 1 ps range. Therefore, the boundaries of time integral in Eq. (2) can
be taken to be infinity because tint >> τP. The squared oscillating term can then be integrated
separately and yields 1/2. In Eq. (3) we approximate the peak intensity for a focussed Gaussian
pulse as I = 4

√
ln2G/(π3/2r2τP), where r is the waist radius at the focus and G the energy per

pulse. Eq. (3) reveals that it is not the instantaneous transmission or reflection that is measured,
but the integrated intensity.

In our study, we use a spectrometer to frequency resolve the reflected transient signal. The re-
flected signal from the cavity is spectrally filtered with a spectrometer (Acton) and detected with
a nitrogen cooled InGaAs line array detector (Princeton Instruments). Therefore, the observed
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spectrum, without amplification and conversion factors, is a Fourier transform of E(t) [31, 32]

J(ω) = πr2(ε0c)−1
∣∣∣∣∫ ∞

−∞

dtE(t)eiωt
∣∣∣∣2 (5)

where c is the velocity of light in free space. The field escaping from a cavity whose resonance
frequency shifts in time may exhibit new frequency components where the amplitude is higher
than that of the incident bandwidth limited pulse. In this case, the ratio of the reflected pulse
to the reference pulse, called the transient reflectivity Rt(ω) = J(ω)sample/J(ω)re f exceeds
unity at the new frequency components. In this sense, the transient reflectivity differs from the
reflectivity measured in a CW experiment that is necessarily always bounded to 100%. The
measured transient reflectivity Rt(ω) is a result of the probe light that impinges at delay ∆t,
circulates in the cavity during on average the storage time τc, escapes, and is then integrated
by the detector. Therefore, we call the measured signal the transient reflectivity or the transient
transmission.

Appendix B: Model to calculate time-resolved spectra

The model that we employ to calculate the time-resolved transient reflectivity Rt spectra has
previously been introduced by by Harding et. al. [25]. The probe field is calculated in the
time domain at every position in a one-dimensional planar microcavity that experiences a time-
dependent refractive index. To account for the induced refractive index change n(t), we consider
here the positive non-degenerate Kerr coefficient of GaAs [18]. We start with a Gaussian probe
pulse at position z = z0:

Epr(z0, t) = E0(z0)e−iωte−(t−t0/τpr)
2
, (6)

where E0 is the amplitude of the probe field Epr and ω the angular frequency, t running time
and t0 is the launch time of the probe pulse. In our calculations we chose a short duration for the
probe pulse (τpr = 10 fs) to obtain a broad spectral bandwidth and thus a flat response within
the spectral region of the cavity resonance. The field that starts from position z = z0 travels in
homogeneous medium with a time dependent refractive index n(t). The time that it takes for the
field to travel from position z0 to z is then equal to t = n(t) ·(z−z0)/c. As a result, the Gaussian
pulse at position z is given by

Epr(z, t) = Epr(z0,n(t) · (z− z0)/c)

= E0(z0)eiω(n(t)·(z−z0)/c)e−((n(t)·(z−z0)/c)−t0/τpr)
2
. (7)

Similar to our experiments the structure that we describe in our model consists of air, the top
Bragg mirror, the λ -layer, the bottom Bragg mirror, and air after the cavity structure, as shown
in Fig. 9. Since the thickness of the GaAs wafer is not exactly known, we exclude it in our
model. The Bragg mirrors consist of AlAs and GaAs layers with unswitched refractive indices
nAlAs and n0

GaAs, respectively. During the switching of our microcavity we take the refractive
index of AlAs and air to be constant in time, whereas the refractive index of GaAs is time
dependent. Since the change of the refractive index of AlAs is five times smaller [15] we safely
treat its refractive index as a constant. The refractive index of GaAs changes with the time delay
∆t between the pump and the probe pulses due to the electronic Kerr effect. Hence, we define a
position- and time-dependent refractive index for the structure as follows:
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Fig. 9. Schematic picture of the one-dimensional microcavity considered in our model cal-
culations. The Bragg mirrors consist of GaAs and AlAs layers and the λ -layer consists of
GaAs. The thickness of the air, GaAs, and AlAs layers are indicated in the figure so as to
yield a resonance frequency as in our experiment. The first two interfaces are marked with
the indices i and i+1. The probe field is launched at z = z0.

n(z, t) =


nair , z in air
nAlAs , z in AlAs

n0
GaAs +

12π2χ(3)

(n0
GaAs)

2c
· [Ipue−(

t−∆t
τpu )2

] , z in GaAs,
(8)

where χ(3) is the third-order susceptibility of GaAs, Ipu the peak intensity of the pump pulse,
τpu the duration of the pump pulse, and ∆t the time delay between pump and the probe. In
our calculations we neglect the refractive index change induced by the probe light since the
intensity of the probe is much lower than the pump intensity. Since the probe field propagates
through the microcavity structure that consists of many different materials with different re-
fractive indices, the field encounters many interfaces. The field that impinges on an interface is
partly reflected and partly transmitted, as given by the Fresnel coefficients [34]. The reflected
(r) and transmitted (t) amplitude coefficients at normal incidence from any interface are equal
to

r=
n1(z, t)−n2(z, t)
n1(z, t)+n2(z, t)

,

t=
2n1(z, t)

n1(z, t)+n2(z, t)
, (9)

where n1(z, t) and n2(z, t) are the time-dependent refractive indices of the first and the second
medium, respectively. Due to the transmission and reflection from an interface, there are fields
travelling in opposite directions. Part of the field transmitted by interface i is reflected from the
next interface i+1 and thus interferes with the incident field. As a result, at a given position z
inside the microcavity, the field is equal to

E i
pr(z, t) = E+

pr(z0,n(z, t) · (z− z0)/c) · ti

+E−pr(z0,n(z, t) · (z− z0)/c) · ri+1 (10)
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For convenience we take the direction of the transmission as the positive direction. Since the
microcavity structure consists of N interfaces, we have generalized Eq. (10) to N total number of
interfaces and mark Fresnel coefficients ri and ti with the index i, which represent the interface
number.

We calculate the field at any position z in the multilayer structure by inserting the time-
dependent refractive index of GaAs and the time-independent refractive indices of AlAs and
air in n(z, t) from Eq. (8) into Eq. (10). Equation (10) can be generalized to a case where
both the refractive indicies of GaAs and AlAs are time-dependent. If the field is, for instance,
at GaAs and AlAs interface, the time-dependent index of GaAs and AlAs should be inserted
in n1(z, t) and n2(z, t) in Eq. (9), respectively. To calculate the transient reflectivity spectrum
we include all interfaces, see Fig. 9, to obtain the total time-resolved field Epr(z, t). Next, we
perform a discrete Fourier transform on such a field in reflection geometry

|Epr(z,ω)|2 =
∣∣∣∣ t

∑
0

Epr(z, t) · e−(i2πωδ t)
∣∣∣∣2. (11)

to obtain the transient field E (z,ω), and thereby the transient reflectivity Rt spectra. In Eq. (11)
δ t represents the time step.
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